Dataset associated to the project "Spatial regression of multi-fidelity meteorological observations using a proxy-based measurement error model"
DOI:10.4121/ffa71bf6-b605-4719-acb5-83b733208e4b.v1
The DOI displayed above is for this specific version of this dataset, which is currently the latest. Newer versions may be published in the future.
For a link that will always point to the latest version, please use
DOI: 10.4121/ffa71bf6-b605-4719-acb5-83b733208e4b
DOI: 10.4121/ffa71bf6-b605-4719-acb5-83b733208e4b
Datacite citation style
de Baar, Jouke H. S.; Garcia-Marti, Irene (2023): Dataset associated to the project "Spatial regression of multi-fidelity meteorological observations using a proxy-based measurement error model". Version 1. 4TU.ResearchData. dataset. https://doi.org/10.4121/ffa71bf6-b605-4719-acb5-83b733208e4b.v1
Other citation styles (APA, Harvard, MLA, Vancouver, Chicago, IEEE) available at Datacite
Dataset
Usage statistics
224
views
843
downloads
Categories
Geolocation
the Netherlands
lat (N): [50 - 54]
lon (E): [3 - 8]
Time coverage 29-06-2021
Licence CC0
Interoperability
Dataset associated to the project "Spatial regression of multi-fidelity meteorological observations using a proxy-based measurement error model" presented at the European Meteorological Society (EMS) 2022 conference in Bonn (Germany). The present dataset contains the code and data collections to run the examples that can be found in the manuscript. An abstract associated to this manuscript (currently under revision) can be found following this link: https://meetingorganizer.copernicus.org/EMS2022/EMS2022-53.html
History
- 2023-06-05 first online, published, posted
Publisher
4TU.ResearchDataFormat
csv; txt; octave; matlab; pngOrganizations
KNMI - Royal Netherlands Meteorological InstituteDATA
Files (21)
- 345 bytesMD5:
27d7ec4e4c315c51fd989dad5c9cfd8d1pd_lat.csv - 309 bytesMD5:
a2f6142e7b968dd7ff5e0444eda9ac1f1pd_lon.csv - 96 bytesMD5:
53d22a75696d94d3aace3ebf4c4fa4911pd_windspeed.csv - 4,279 bytesMD5:
7c3e1229634d3dddbefd0a6efd1f54263pd_lat.csv - 3,998 bytesMD5:
27e74d9d655bfa556d3b554370dac10c3pd_lon.csv - 10,749 bytesMD5:
10aa7695796ec9d411ab757ff062564a3pd_windspeed.csv - 1,503,551 bytesMD5:
59e51345125e5fad4f7d8a52c763422ecov_dist2coast.csv - 1,873,500 bytesMD5:
164f83646333b353ca88e6762a17a030cov_lat.csv - 1,874,700 bytesMD5:
9fbf4ff2a86ef1c6f8c408f1d7a37d5dcov_lon.csv - 577,816 bytesMD5:
5e0a0bf3e33bf247b97e9430149557c3cov_population.csv - 975,396 bytesMD5:
f55f9465d25d073caf366f8c7784de5fcov_tree.csv - 1,346 bytesMD5:
8457106a195e071049675e114f7113a4hyperxvalGoalFunction.m - 1,049 bytesMD5:
5911c3b6eeab2e98aa4457907c83b949license.txt - 4,898 bytesMD5:
edf46bbf66cf98c186730f8b8aa0877bmain.m - 210,300 bytesMD5:
c9ff256259641226a8c38900b1c2adc2mask.csv - 24,313 bytesMD5:
c56a53c63e1bcd1715e68eb4e77409d6posterior_mean.png - 34,932 bytesMD5:
6f7bf222e1519ee20c3795ed76246e84posterior_std.png - 1,003 bytesMD5:
4aea2134bf8e1ee5aea9f88fdc4c416breferences.txt - 7,202 bytesMD5:
350d9d36badd1985da65fe856f25b75aregressionkriging.m - 488 bytesMD5:
5944f0f158adfef6214629c19a8a5647running_the_example.txt - 58,568 bytesMD5:
e52303c257ba26659bc4fcdaabdec127station_data.png -
download all files (zip)
7,168,838 bytes unzipped




