Data underlying the publication "Improved Electron-Nuclear Quantum Gates for Spin Sensing and Control"
DOI: 10.4121/643ed69d-ced0-4d45-86b3-534a5b79c605
Datacite citation style
Dataset
The ability to sense and control nuclear spins near solid-state defects might enable a range of quantum technologies. Dynamically Decoupled Radio-Frequency (DDRF) control offers a high degree of design flexibility and long electron-spin coherence times. However, previous studies considered simplified models and little is known about optimal gate design and fundamental limits. Here, we develop a generalised DDRF framework that has important implications for spin sensing and control. Our analytical model, which we corroborate by experiments on a single NV center in diamond, reveals the mechanisms that govern the selectivity of gates and their effective Rabi frequencies, and enables flexible detuned gate designs. We apply these insights to numerically show a 60x sensitivity enhancement for detecting weakly coupled spins and study the optimisation of quantum gates in multi-qubit registers. These results advance the understanding for a broad class of gates and provide a toolbox for application-specific design, enabling improved quantum control and sensing.
This server contains the data and jupyter notebooks to reproduce the figures (see README file for instructions). Execute the notebook files (.ipynb extension) via an iPython environment. These will load the data from the .json and .npy data files to recreate the figures.
History
- 2024-10-28 first online, published, posted
Publisher
4TU.ResearchDataAssociated peer-reviewed publication
Improved Electron-Nuclear Quantum Gates for Spin Sensing and ControlOrganizations
QuTech and Kavli Institute of Nanoscience, Delft University of TechnologyDATA
Files (45)
- 675 bytesMD5:
def4b4c4f31990f6ceb8660b3e81530fREADME.txt - 132,401 bytesMD5:
bf8ab25c80ea81606fd56879f0d6038fdata_figure_1_fourier_transform.json - 67,291 bytesMD5:
e724e23d7b51c7c97af06cfdc7860523data_figure_1_schematic.json - 32,000,329 bytesMD5:
ff0c6f4934bc22769ee10849da7dd449data_figure_1_sensitivity.npy - 33,712,601 bytesMD5:
926426f93bc16e9a08322edc1abaf070data_figure_1_spectrum_simulation.json - 355,328 bytesMD5:
cb4137db69460235034786efd82549dddata_figure_2_bath_sig_LT3_phase.npy - 355,328 bytesMD5:
b15656c9319951b0973a8d32f8b4a702data_figure_2_individual_spin_calc_approx_2.npy - 355,328 bytesMD5:
6321512a6ad3713f5fcfcdc27b8752dbdata_figure_2_individual_spin_calc_approx_single.npy - 324,370 bytesMD5:
5c23394a6278a9eb6d5c549e1b060cf8data_figure_2_N_sweep.json - 1,060,222 bytesMD5:
0de50cdd91ff951be5ee71c0d75dfb2cdata_figure_2_phase_freq_sweep.npz - 355,328 bytesMD5:
d91443e15a2a883fb720e924f9a2a709data_figure_2_spin_sig_total_exact_LT3_phase.npy - 1,088 bytesMD5:
baf0d687872ff858e7c2cb08beb76821data_figure_3_c2_08V_N102_20TAUL.npy - 1,088 bytesMD5:
3ca507eee30499854309625bdad53649data_figure_3_c2_08V_N32_20TAUL.npy - 1,088 bytesMD5:
70378c3036c2f9493fea2a46f117a036data_figure_3_c2_08V_N32_30TAUL.npy - 1,088 bytesMD5:
77dc0846b4e1f375ecf8d9f933337600data_figure_3_c2_08V_N32_40TAUL.npy - 1,088 bytesMD5:
f55424f14628b68efc03fa69ac6a882adata_figure_3_c2_08V_N32_50TAUL.npy - 1,088 bytesMD5:
36b6e2ed32e39bad298ecc702a19b2e1data_figure_3_c2_08V_N60_30TAUL.npy - 65,379 bytesMD5:
200a299a13cc7ec128ffd78d4a050087data_figure_3_schematic.json - 194,919 bytesMD5:
3b58221edf58670c2673f58330e23e53data_figure_3_single_pulse_double_driving.json - 309,087 bytesMD5:
e4bebbb69eda20138d93ead086516754data_figure_3_theory_u.json - 195,275,998 bytesMD5:
831a234dd739d604b5551fc323a5060adata_figure_4_data_1.json - 42,064,692 bytesMD5:
2e8f088efcb1e123e88ee8c9e168f329data_figure_4_data_2.json - 129,581 bytesMD5:
4f44b56b868e7231b65cffee752ae4cddata_figure_4_driving_ft_detuned.json - 170,051 bytesMD5:
199d3c1bab4312ae99e24fa62427b20edata_figure_4_rabi_scaling.json - 2,000,128 bytesMD5:
80c09ff3e90db2bf6ec0eb2a8c8dffc9data_figure_5_bath_sig_LT3_25us.npy - 1,543,120 bytesMD5:
21b6f488a24fcfa0372d8b6ea9704da9data_figure_5_C1_target_Taus_Ns_LT3_20240914_1403_fidelities_t2_star_echo_fids_deph_single 1.json - 1,545,357 bytesMD5:
768bb972a661e2150c2f567b16b323d8data_figure_5_C4_target_Taus_Ns_LT3_20240914_1736_fidelities_t2_star_echo_fids_deph_single 1.json - 240,948 bytesMD5:
301461defe388cad3d79fbcddf3e0f25data_figure_5_DDRF_driving_ft_selectivity_v2.json - 1,060,222 bytesMD5:
0de50cdd91ff951be5ee71c0d75dfb2cdata_figure_5_DDRF_phase_freq_sweep.npz - 2,000,128 bytesMD5:
faa04ffebf75515385f5a99bf2102a80data_figure_5_spin_sig_total_exact_LT3_25us.npy - 1,544,330 bytesMD5:
ae5de0810877e7bf50521d43d29c0ba9data_figure_I1_C4_target_Taus_Ns_LT3_20240912_1509_fidelities_fids_bath.json - 1,544,434 bytesMD5:
2026c41feb3bedb68b5e380f3eb6c9ebdata_figure_I1_C4_target_Taus_Ns_LT3_20240912_1509_fidelities_fids_deph.json - 1,543,740 bytesMD5:
aa4b88d06bbe47e8c973f72a01d3e1dddata_figure_I1_C4_target_Taus_Ns_LT3_20240912_1509_fidelities_fids_pure.json - 1,542,863 bytesMD5:
78155ef837597ca1dc7b93f70510269cdata_figure_I1_C4_target_Taus_Ns_LT3_20240912_1720_fidelities_fids_pure_single.json - 1,548,891 bytesMD5:
cddb0d8ce73cac3d0abc4265754c8635data_figure_I1_C4_target_Taus_Ns_LT3_20240913_0947_fidelities_t2_star_fids_deph_single 2.json - 1,544,014 bytesMD5:
7e77134827e1b5ba4c538a4049fdefe8data_figure_I2_C0_target_Taus_Ns_LT3_20240914_2318_fidelities_t2_star_echo_fids_deph_single.json - 1,543,120 bytesMD5:
21b6f488a24fcfa0372d8b6ea9704da9data_figure_I2_C1_target_Taus_Ns_LT3_20240914_1403_fidelities_t2_star_echo_fids_deph_single 1.json - 1,545,357 bytesMD5:
768bb972a661e2150c2f567b16b323d8data_figure_I2_C4_target_Taus_Ns_LT3_20240914_1736_fidelities_t2_star_echo_fids_deph_single 1.json - 1,545,195 bytesMD5:
55a6e9339dd459ee4a43d18a79501f8adata_figure_I2_C6_target_Taus_Ns_LT3_20240915_1611_fidelities_t2_star_echo_fids_deph_single.json - 1,546,467 bytesMD5:
991ba6ea26df6f2d899ecda3ea516481data_figure_I2_C8_target_Taus_Ns_LT3_20240915_1843_fidelities_t2_star_echo_fids_deph_single.json - 88,458 bytesMD5:
cd1879a0b2500b60b53cbe0265502d89figure_1.ipynb - 99,918 bytesMD5:
d70daf299fbb14d058fd554353574147figure_2.ipynb - 64,518 bytesMD5:
1a0961c855924eb402496b748dcbe10bfigure_3.ipynb - 173,583 bytesMD5:
37325ed16ca0023f041363bb964f2369figure_4.ipynb - 294,728 bytesMD5:
63d2121880c8f446252eb8d399d7edeffigure_5.ipynb -
download all files (zip)
331,494,955 bytes unzipped





